A SYNTHESIS OF A DOUBLY-BRIDGED [24] ANNULENE

Koji Yamamoto, *a Mitsuo Shibutani, b Shigeyasu Kuroda, b Emiko Ejiri, c and Jūro Ojima *c

^aDept. of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka 560, ^bDept. of Industrial Chemistry, Faculty of Engineering, Toyama University, and ^cDept. of Chemistry, Faculty of Science, Toyama University, Gofuku, Toyama 930, Japan

Summary: Reductive coupling of 1,6-bis(2-formylviny1)cyclohepta-1,3,5-triene with a low-valent titanium reagent afforded a paratropic bismethano[24]annulene.

The reductive coupling of carbonyl compounds with low-valent titanium salt seems to serve a new tool for the synthesis of large-membered conjugated polyenes (annulenes), since the synthesis of annulenes had so far involved lengthy reaction sequence. Recently, in practice, Tanner $et\ al.$ reported a synthesis of bismethano[16]annulene (l) from cycloheptatriene-1,6-dialdehyde (l) with titanium tetrachloride and zinc, and showed l to be paratropic. In view of this and no precedents of bridged [24]annulene, synthesis of the higher analogue of l, bismethano[24]annulene (l) carrying inner protons, seemed to be of considerable interest for the purpose comparing the properties.

H²
5.03 5.15

H¹
1.80
4.42

τ values in CDCl₃

Cycloheptatriene-1,6-dialdehyde (2) was converted to the bis-vinylogue 4 by the method of Cresp et al. 4) Reaction of 2 and the salt 3 in DMF with ethanolic LiOEt at 75°C, followed by hydrolysis with dilute hydrochloric acid in THF at room temperature, gave 71% of 4^{5} (isolated by chromatography on Al₂O₃) as yellow needles, mp 163-164°C; ¹H NMR (90 MHz) τ 0.39 (d, J=7.2 Hz, 2H, -CHO), 2.81 (d, 15.6, 2H, H^A), 3.24-3.44 (m, 4H, H¹ and H²), 3.58 (dd, 15.6, 7.2, 2H, H^B), and 7.22 (s, 2H, -CH₂-). Reductive coupling of 4 with titanium trichloride and LiAlH₄ in refluxing dimethoxyethane ⁶) gave 4.8% of 5^{5} (isolated by chromatography on silica gel) as stable black brown needles, mp

200°C (dec); ¹H NMR (270 MHz) τ 1.01 (dd, J=15.1, 8.8, 4H, H^B), 3.73 (dd, 4.2, 2.7, 4H, H²), 4.05 (d, 4, 4H, H¹), 4.07 (d, 14.9, 4H, H^A), 4.25 (d, 8.5, 4H, H^C), and 5.89 (s, 4H, -CH₂-).

The ¹H NMR spectrum of ξ is illustrated in Fig. 1. As we see from Fig. 1, the molecule ξ is paratropic, as might be expected of 24π -system, since the inner H^B proton resonates in a low field, while the outer H^A , H^C , H^1 , and H^2 protons do in rather high field. Also, the bridged methylene protons of ξ resonate in lower field (Δ -1.2 ppm), as compared with those of the dialdehyde Φ (vide ante).

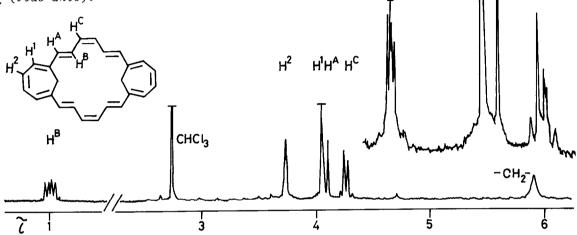


Fig. 1. The 270 MHz 1 H NMR spectrum of 5 in CDC1 $_{3}$

An inspection of Dreiding molecular model reveals that the conjugated system in ξ is more disadvantageous than in ξ with respect to spatial orbital overlap of π -electrons. This is reflected in degree of paratropicity, *i.e.*, planarity of the molecular skeleton between ξ and ξ ; ξ being much less paratropic than ξ .

The additional thermal stability of the bismethano[24]annulene 5 when compared with the [24]annulene 7a and the trisdehydro[24]annulene 7b might come from rigidity of the ring skeleton due to two methylene bridges.

Further studies on doubly-bridged [4n]-membered annulenes are now in progress.

References

- 1) L. E. McMurry, Acc. Chem. Res., 7, 281 (1974).
- 2) D. Tanner, D. Wennerström, and E. Vogel, Tetrahedron Lett., 1982, 1221.
- 3) A. Sabljić and N. Trinajstić, J. Org. Chem., 46, 3457 (1981).
- 4) T. M. Cresp, M. V. Sargent, and P. Vogel, J. Chem. Soc., Perkin Trrans. I, 1974, 37.
- 5) A satisfactory elemental analysis was obtained.
- 6) A. L. Baumstark, C. J. McClosky, and K. E. Witt., J. Org. Chem., <u>43</u>, 3609 (1978).
- 7) a) F. Sondheimer, R. Wolovsky, and Y. Ami'el, J. Am. Chem. Soc., 84, 274 (1962).
 - b) S. Nakatsuji, S. Akiyama, and M. Nakagawa, Tetrahedron Lett., 1976, 2623.

(Received in Japan 30 November 1985)